Transformation d’un moteur asynchrone triphasé en génératrice synchrone à aimant permanent.

Introduction

Cela fait quelques années que je cherchais une génératrice adaptée aux caractéristiques de ma turbine (200W@1500 tr/min) mais je n’ai jamais trouvé le matériel adéquat.
Le meilleur rendement obtenu s’avère être le moteur de machine à laver utilisée en tant que dynamo que j’utilise depuis le début de l’aventure.
J’ai donc décidé de transformer un moteur asynchrone triphasé normalisé en génératrice synchrone à aimant permanent.
Pour concrétiser cette idée j’ai dessiné un nouveau rotor dimensionnellement identique à l’ancien mais structurellement différent en lui ajoutant des aimants permanents en périphérie.

La base à transformer : Moteur asynchrone triphasé

Mon choix s’est porté sur un moteur asynchrone triphasé normalisé car le prix est compétitif, le moteur est simple de construction, fiable et performant, les seules pièces d’usures sont les roulements.
Ce moteur dit à cage d’écureuil fonctionne ainsi : lorsque j’alimente le moteur avec une source électrique alternative les bobines présentent dans le stator génèrent un champs magnétique tournant. Sous l’effet de ces champs magnétiques tournants, le rotor se met à tourner.

Un autre avantage à choisir ce type de moteur asynchrone normalisé est la possibilité de choisir une vitesse de rotation proche de ses besoins au travers des spécifications courantes, à savoir :

  • 2 pôles = 3000 tr/min
  • 4 pôles = 1500 tr/min
  • 6 pôles = 1000 tr/min
  • 8 pôles = 750 tr/min.

Le concept de la transformation

L’idée est d’inverser le processus du moteur :
Processus en tant que moteur : on génère un champ magnétique tournant à l’aide d’une source électrique alternative traversant le stator.
Autrement dit : c’est grace à l’électricité qu’on met en rotation l’axe moteur.
Processus en tant que génératrice : on génère un flux électrique dans le stator à l’aide d’un champs magnétique tournant généré par la rotation du rotor composé d’aimants.
Autrement dit : c’est en faisant tourné l’axe du moteur par l’intermédiaire de la roue Pelton qu’on génère de l’électricté.

Les caractéristiques du moteur asynchrone choisi

Le stator est constitué d’un cylindre ferromagnétique entaillé d’encoches permettant d’y loger les bobinages. Ce cylindre est constitué d’un empilement de plaques de tôles feuilletées afin de limiter les courants de Foucault.
Le stator comporte 24 encoches, soit :

  • 12 bobines au total
  • 4 bobines par phase.
  • Pas polaire : 6 encoches sous un pôle
Le rotor et le stator non modifié ainsi que le nouveau rotor imprimé en ABS
Le rotor et le stator non modifié ainsi que le nouveau rotor imprimé en ABS

Le rotor à cage décureuil est constitué de tôles ferromagnétiques et de barres conductrices régulièrement réparties à la périphérie du rotor. Les barres sont reliées entre elles par deux anneaux de court-circuit. Les tôles ferromagnétiques servent à guider les lignes de champ tandis que les barres accueillent les courants induits.

 

Plaque moteur.

La vitesse de rotation à l’arbre devant idéalement se situer aux alentours de 1500 tr/min et sa puissance théorique étant de 200 Watts, j’ai naturellement choisi un moteur asynchrone triphasé normalisé se rapprochant le plus possible des caractéristiques souhaités.
Visant une puissance théorique de 200 W, j’ai choisi un moteur « plaqué » 220 W.
La vitesse de rotation devant se situer aux alentour de 1500 tr/min, j’ai choisi un rotor à 4 pôles.
J’ai volontairement « surclassé » le moteur choisi car n’oublions pas qu’il sera détourné sa fonction initiale et que le rendement en sera forcément affecté.
Visant une puissance théorique de 200 W, j’ai choisi un moteur « plaqué » 220 W.

Caractéristiques détaillées

  • 4 pôles
  • 1500 tr/min
  • 220W
  • Hauteur d’axe : 63 mm
  • Câblage : étoile ou triangle
  • 230△/400Y 1370rpm
  • 277△/480Y 1650 rpm

Conception du rotor imprimé

J’ai dessiné un rotor d’un diamètre et d’ une longueur strictement identique au rotor initial afin qu’il puisse loger dans le stator. Le nouveau rotor comporte 2 paires de pôles soit 4 aimants formant les 4 pôles magnétiques.
La partie principale (en blanc sur l’image ci-dessous) acceuille les 4 aimants.
Les flasques, de couleur verte, interdisent la translation des aimants.
L’ensemble rotor/flasques est maintenu assemblé par l’intermédiaire de 4 goujons M4 traversants. Ces goujons devraient idéalement être en laiton afin de ne pas perturber les champs magnétiques produit par le rotor.

Télécharger le fichier STL du rotor

Le rotor est ses 2 flasques de couleur verte (rendu Fusion 360)

Afin de reproduire les 4 pôles magnétiques je vais utiliser 4 aimants disposés à 90° avec les polarités suivantes :

Les aimants sont des parallélépipèdes mesurant 3″ x 1/2″ (7,62 x 1,27 cm)
Material: NdFeB (néodyme, fer et bore)
Force : 34 kg
Poids : 92 gr
température de fonctionnement maximum : 80°C
Le site ou j’ai acheté les aimants : K&J Magnetics, Inc.

Rotor imprimé en ABS avec ses 4 aimants. (rendu Fusion 360)

Dans l’images ci-dessus on peut voir les 4 encoches destinées à recevoir les aimants.
Les aimants n’étant pas vissés on note la présence d’une « rainure » empêchant l’ejection radiale des aimants, cette caractéristique influe grandement sur la taille de l’entrefer et serait à éviter pour diminuer la distance entrefer.

Le rotor initial à cage d’écureuil et le rotor à aimant permanent imprimé en ABS.

Sur la photo ci-dessus on peut voir le nouveau rotor imprimé en ABS avec les aimants, les deux flasques latérales (interdisant la translation des aimants sur l’axe), l’axe et les 2 roulements.

 

Le rotor imprimé en place dans le stator.
Le rotor imprimé en place dans le stator.

Petit test manuel

https://youtu.be/KiR8BeQPpCQ
Essai à vide du nouveau rotor imprimé avec ses 4 aimants

Un petit test sans grande valeur mais qui se veut rassurant.
Comme on peut le voir dans la vidéo le nouveau rotor est pleinement fonctionnel, le générateur alimente sans problème une lampe LED de 3W@12V.
Le « cogging » est également très faible. Le cogging c’est la résistance que l’on ressent lorsqu’on tourne l’arbre d’un générateur à aimant permanent à vide, ce couple « résistant » est produit par les aimants du rotor.
Ce phénomène est caractéristique des générateurs à aimants permanents à faible vitesse de rotation. On retrouve également ce phénoméne au niveau des moteurs pas à pas (stepper) ou l’on peut même sentir le « pas ».
Ce couple résistant augmente quand on court-circuit les phases d’un PMG.

Test grandeur nature

 

https://youtu.be/UkWhgetPBG0
Essai du nouveau générateur en charge.

Les mesures sont effectuées entre phase, les charges connectées utilisées sont des ampoules à incandescence d’une puissance de 100 Watts, au nombre de 3, une ampoule entre chaque phase. D’un point de vue physique les ampoules à filament sont des charges quasiment linéaires.

Résultats

Les résultats sont surprenants, la génératrice produit 180 Watts, le gain est de 50% par rapport au moteur de machine à laver que j’utilisais jusqu’alors (120 Watts).
Je précise cependant que cette puissance de 180 Watts obtenue n’est pas la puissance directement exploitable par mon installation.
Le moteur de machine à laver produisant directement du courant continu, ce dernier est exploité tel quel par le régulateur de charge, sans aucune modification.
En revance la nouvelle génératrice produisant un courant alternatif triphasé il sera impératif de redresser le signal et d’abaisser la tension (à cause de la tension maximum admissible par le régulateur), cela aura pour effet d’induire des pertes mais cette partie fera l’objet d’un prochain article.

Le tableau ci-dessous résume les tensions et puissances obtenues en fonction du couplage (étoile ou triangle) et de la vistesse de rotation de la génératrice.

On constate que le meilleur résultat est obtenu lorsque la génératrice est couplée en étoile.
On notera également qu’indépendement du couplage le rapport de transmission à une influence sur le rendement de la génératrice.

Prenons l’exemple du couplage en étoile (colonne orange) :
Avec un rapport de transmission de 1, on observe qu’on perd 25% de puissance par rapport au rapport de 0,57.
Cela s’explique en partie par le fait qu’avec un rapport de transmission de 1 le couple roue/génératrice n’est pas dans sa plage de fonctionnement optimum, de 3400 tr/min à vide la vitesse s’éffondre aux alentours de 1170 tr/min.
En revanche, avec un rapport de transmission de 0,57, on gagne 25 % de puissance, ce qui peut en partie s’expliquer en partie par :

  • La diminution de la vitesse de rotation de la génératrice (de 2230 à 1271 tr/min)
  • L’augmention du couple côté génératrice (dû à la diminution de la vitesse)
  • La vitesse de rotation de la génératrice s’approche de sa conception initiale (1271 tr/min réel contre 1500 tr/min théorique)
    Cette vitesse de rotation à également une incidence sur la fréquence du courant produit mais cela n’est pas dérangeant en soi car dans mon cas de figure le courant alternatif est converti en courant continu (à l’aide d’un pont de diode à double alternance).

Forme des sinusoides

 

Forme des sinusoides

Amélioration

  • Imprimé en ABS le rotor ne peut pas générer de circuit magnétique. Pour résoudre ce problème, on gagnerait à usiner un rotor en acier doux, ou usiner le rotor initial.
  • Pour diminuer l’entrefer on pourrait utiliser des aimants en forme d’arc dont le rayon serait identique à celui du rotor initial. Ces aimants seraient vissés sur le rotor.

Bibliographie